CO₂排放峰值与低碳发展转型

清华大学 何建坤 2015.8.27

1. 中国公布2020年后国家自主贡献强化行动目标,是统筹国内能源、环境、经济协调发展和应对全球气候变化的战略选择(1)

- □ 2030年GDP的CO₂强度比2005年下降60-65%; 2030年左右CO₂排放达到峰值且努力早日达峰; 2030年非化石能源占一次能源消费比重提高到20%左右; 森林蓄积量比2005年增加45亿m³。
- □ 该目标是一个积极紧迫和有力度的目标,是一个付出艰苦努力可以实现的目标。
- □ 能源消费的CO₂排放是中国GHG排放及增长的主要来源。中国 CO₂排放占全部GHG排放的80%,其中森林增汇大体与工业过程 的CO₂排放相抵销。

1. 中国公布2020年后国家自主贡献强化行动目标,是统筹国内能源、环境、经济协调发展和应对全球气候变化的战略选择(2)

- □ 中国经济社会快速发展不仅使CO₂排放呈加快增长趋势,也带来 国内资源紧缺和环境污染的压力。推动能源生产和消费革命,是 实现应对气候变化和可持续发展"双赢"的根本途径。
- 应对气候变化的智慧行动可以推动创新,提高经济增长并带来诸如可持续发展、增强能源安全、改善公共健康和提高生活质量等广泛效益,也将增强国家安全和国际安全。——《中美气候变化联合声明》
- □ 确立积极的减排目标,有利于促进经济发展方式向绿色低碳转型, 促进国内可持续发展。

2. 积极的INDC目标将促进能源体系的革命性变革,大幅度降低GDP的能源强度和CO₂强度是当前统筹经济增长和节能减碳的综合目标、核心对策和关键着力点

- □ 中国提出推动能源生产和消费革命,强化节能和能源结构低碳化, 降低GDP的CO₂强度。
- □ "十一五"制定GDP能源强度下降20%左右的约束性目标,实际达到19.1%,相应CO₂强度下降21%。
- □ "十二五"制定GDP能源强度下降16%、CO₂强度下降17%的约束性目标。
- □ 从2005-2014年,GDP的能源强度下降29.9%,CO₂强度已下降 33.8%,同期附件II国家下降幅度仅约15%。
- □ 中国制定2020年GDP的CO₂强度比2005年下降40-45%的目标, "十三五"经努力有望超过45%。

3. 实现2030年GDP的CO₂强度比2005年下降60-65%的目标,为 CO₂排放达到峰值创造条件(1)

- □ 2030年单位GDP的CO₂排放比2005年下降60-65%,相比实现2020年下降40~45%的目标,需要进一步加大节能和能源替代力度,做出更大努力。
- □ GDP的CO₂强度2020年比2005年下降40-45%,年下降率需达3.35-3.91%;2030年比2005年下降60-65%,年下降率则需达3.60-4.11%;2020~2030年则需达3.97-4.42%。下降速度需不断提高。
- □ 能源消费弹性: 2005~2013年平均为0.59, "十三五"期间应下降到约0.5, 到2030年下降到约0.3。

3. 实现2030年GDP的CO₂强度比2005年下降60-65%的目标,为 CO₂排放达到峰值创造条件(2)

- 中国GDP的 CO_2 强度下降速度尚高于欧盟、美国等发达国家,但 GDP潜在增速高,2030年前 CO_2 排放量仍将有所增长,而发达国 家 CO_2 排放量则可下降。
 - 欧盟INDC: 2030年GHG排放比1990年减少40%, GDP的GHG排放 强度年下降率1990~2012年为2.56%, 但总量减排18%; 2012~2030 年则为3.6% (GDP增速估计2%左右), 总量可减排27%。
 - 美国INDC: GHG排放2025年比2005年下降26-28%。未来GDP增速约2.5%左右, GDP的GHG强度年下降率估计为3.45-3.59%。

4. 大力发展新能源和可再生能源,实现2030年非化石能源比例达 20%左右目标,是2030年左右 CO_2 排放达峰的重要保障 (1)

- □ INDC目标中提出,到2030年非化石能源在一次能源消费中的比例提高到20%左右。
- □ 中国已制定2020年非化石能源比例从2005年6.8%上升到15%的目标。
- □ 2014年非化石能源比例达11.2%,今后每年供应量增速要达8%以上。
- □ 2020年非化石能源供应量将达7亿tce, 相当日本能源消费总量。
- □ 加快天然气开发利用,天然气比例将由2005年2.6%提升到2020年10%以上。
- □ 2030年能源总消费约60亿 tce, 非化石能源供应量需达12亿 tce 左右, 为 2010的4倍以上。

4. 大力发展新能源和可再生能源,实现2030年非化石能源比例达 20% 左右目标,是2030年左右 CO_2 排放达峰的重要保障 (2)

- 从目前到2030年,新增核电、 水电、风电、光伏发电、生物 质发电等非化石能源装机8-10 亿千瓦,非化石能源发电领域 新增投资约达约10万亿元。
- 2030年一次能源消费构成中, 非化石能源约20%,天然气约 15%,煤炭低于50%,能源消 费的CO₂强度将比2005年下降 约20%。

中国非化石能源装机发展情景设想 (2010-2030)

	2010		2020		2030	
	装机容量 / 亿千瓦)	折合一 次能源/ 亿 tce	装机容 量 / 亿千 瓦)	折合一次 能源/亿 tce	装机容 量/亿千 瓦)	折合一 次能源 / 亿 tce
水电	2.1	2.18	3.5	3.67	4.5	4.73
风电	0.4	0.26	2.0	1.44	4.0	2.88
太阳能发 电	0.01	0.01	1.0	0.42	3.0	1.26
生物质能 发电	0.06	0.10	0.3	0.47	0.5	0.83
核电	0.11	0.27	0.58	1.32	1.36	3.07
共计	2.68	2.82	7.38	7.33	13.36	12.77

5. 中国2030年左右 CO_2 排放达到峰值,在经济发展阶段上要早于发达国家 CO_2 排放达峰值时的发展阶段,需要付出更大的努力,也面临更大困难

- © 欧盟等发达国家人均 CO_2 排放峰值和总量峰值时间都陆续出现在20世纪80年代初完成工业化和城市化发展阶段之后。人均GDP(2000年不变价)超过10000美元,经济增长缓慢(<3%),能源消费量基本趋于稳定。美国和日本2005年 CO_2 排放总量才达到峰值。
- □ 中国2030年潜在GDP增速仍达4-5%,能源总需求仍呈缓慢增长趋势。2030年左右 CO_2 排放达峰值,必须有更大力度节能和能源结构调整的措施。
- □ 中国2030年左右CO₂ 排放达到峰值,人均 CO₂排放水平将低于 发达国家峰值时的排 放量。

★ CO₂排放人均和总量峰值以及能源消费峰值

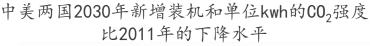
国家	人均 CO ₂ 排 放峰值时 间	CO₂排放总 量峰值时 间	能源消费 总量峰值 时间	工业部门终端能耗峰值时间	人均 CO₂排 放峰值水平 (t/人)	能源消费总 量峰值时人 均能耗 (tce/人)
美国	1973	2007	2007	1973	22.2	10.8
欧盟	1973	1980	2005	1973	9.4	5.54
英国	1973	1975	2001	1973	11.7	5.41
德国	1980	1980	1985	1973	13.4	6.51
日本	2005	2007	2004	1973	9.5	5.87

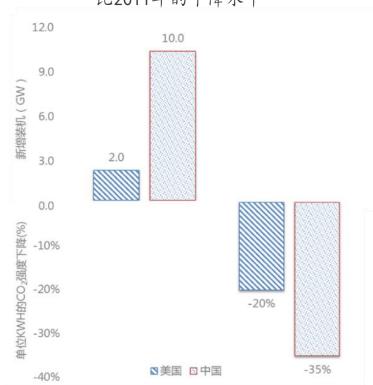
6. 中国2030年左右实现 CO_2 排放峰值目标,需采取强有力的政策和措施,大幅度降低GDP能源强度和 CO_2 强度,在控制 CO_2 排放的同时支撑经济持续增长 (1)

- □ 2030年左右CO₂排放达峰值的条件分析:
 - ① GDP的CO2强度年下降率 > GDP年增长率

- 2030年左右,GDP能源强度下降不低于3%,能源消费的CO₂强度下降率1.2-1.5%,GDP的CO₂强度下降率大于4%,支持GDP年均4~5%的速度增长。
- ② 能耗的CO2强度年下降率 > 能源消费年增长率
- 2030年左右,非化石能源比重达约20%,且供应量以年均6~8%的速度增长,能耗的CO₂强度下降率可达1.2%以上,可支持总能源需求1.2-1.5%的增长,而CO₂排放达到峰值。

6. 中国2030年左右实现 CO_2 排放峰值目标,需采取强有力的政策和措施,大幅度降低GDP能源强度和 CO_2 强度,在控制 CO_2 排放的同时支撑经济持续增长 (2)


- □ 到2030年左右,每年需新增风电装机和太阳能装机各约2000万千瓦,核电装机约1000万千瓦。相当于每小时投产一台单机3MW的风电机组,每年新投产百万千瓦核电机组8-10台。
- □ 从目前到2030年,新投产非化石能源装机8-10亿千瓦,投资约10万亿元。节能和能源转型总投资约40万亿元。
- 坚持创新驱动,绿色增长,促进经济转型升级,节能降碳,实现 国内可持续发展与应对气候变化双赢。

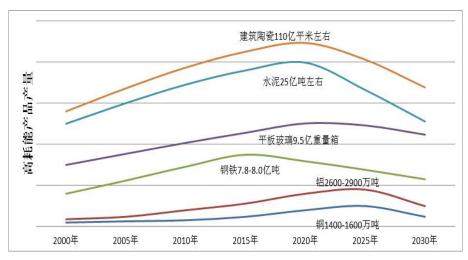


7. 实现CO₂排放峰值目标,将在世界范围内能源体系的变革中发挥引领作用

- □ 发展新能源和可再生能源,发达国家用以"替代存量",中国则需首先 "满足增量"。
- 美国2030年电力系统CO₂排放比2005 年减少30%,比2011年减少21.6%, 需替代煤电1.2-1.5亿千瓦,非化石能 源新增装机1.0-2.0亿千瓦。
- □ 中国2030年比2010年新增非化石能源 装机增长约10亿千瓦,是美国的5倍 以上,但因电力需求增长约1倍, CO₂排放量仍将增长约30%。

8. 实现CO₂排放达峰,是低碳发展转型的重要节点和里程碑,是 经济发展方式转变的重要标志,形成新的经济增长领域和竞争优 势

- □ CO₂排放达峰,GDP持续增长而CO₂排放下降,标志着经济发展与CO₂排放脱钩,是实现低碳转型的转折点。
- □ CO₂排放达峰,是城市形象和竞争力的表现。
- □ 实现CO₂排放达峰,是促进经济发展转型和产业结构调整的驱动力。全国低碳投资要超过40万亿,其中先进能源电力基础设施建设投资超过10万亿,将是新的经济增长点和就业机会。各地要抢占先机,以低碳产业发展带动经济转型。



9. 实现国家自主贡献目标的核心是建立高效、安全、清洁、低碳的可持续能源体系,需要前瞻性战略部署(1)

- □ 能源战略要从传统保障供给转变到同时调控需求,控制能源需求总量的过 快增长,促进发展方式的转变。强化节能优先,大幅度提高能效。
 - 在实施GDP能源强度和CO₂强度下降的约束性目标的同时,研究实施能源消费总量(主要是煤炭)的控制目标,实施"强度"和"总量"的双控机制。
- 转变经济增长方式,调整产业结构, 提质增效,不断降低能源消费弹性。 从2005-2014年均0.59下降到"十 三五"约0.5,2030年约0.3的水平。
 - "十三五"及以后,技术节能难度加大,成本增加,但钢铁、水泥等高耗能产品需求将趋于饱和。产业结构调整和升级带来的结构性节能效果更加显现。

中国主要大宗矿产的需求变化趋势预测(2000~2030)

9. 实现国家自主贡献目标的核心是建立高效、安全、清洁、低碳的可持续能源体系,需要前瞻性战略部署(2)

- □ 加强技术创新,大力发展新能源和可再生能源技术和产业。2013年,非化石能源发电新增容量占新增电力装机总量的比例已达60%,新增投资占当年发电总投资的75%。并呈不断扩大趋势。
 - 实现高比例非化石能源目标: 2005年6.8%, 2020年15%, 2030年20%, 2050年1/3-1/2。
 - 加强智能电网和蓄能技术的发展,提高对可再生电力的吸纳能力,发展分布式可再生能源系统。

9. 实现国家自主贡献目标的核心是建立高效、安全、清洁、低碳的可持续能源体系,需要前瞻性战略部署(3)

- □ 在确保安全的基础上,稳步、高效发展核能。
 - 核能将是我国未来可持续能源体系中的重要支柱,核能2030年装机达约1.2亿千瓦,到2050年可达3.5~4.5亿千瓦,将对我国CO₂排放达到峰值起关键作用。
- □ 加强国内能源资源的开发和科学高效利用,减少对外依赖,加强 国际能源合作,保障能源供给安全。
 - 加强常规和非常规天然气的勘探开发,使天然气在一次能源中的比例 2020年从2010年的4.4%提升到10%以上。

10. 加强经济、能源、环境和应对气候变化的协同治理,实现多方共赢的发展目标

- □ 减少化石能源消费和CO₂排放,将有效缓解国内资源紧缺和环境 污染的严竣形势,促进可持续发展。
- □ 如果使环境质量根本改变,不仅要加强末端治理,还须同时减少煤炭等化石能源消费。东部沿海地区治理雾霾需要控制和减少煤炭消费量,有利于尽快实现CO₂排放峰值。
- □ 当前应对全球气候变化与解决国家能源安全、资源和环境约束、 节能减排的目标一致。长远与中国走新型工业化道路,建设资源 节约型、环境友好型社会的发展目标一致。

11. 以国家自主贡献目标为导向,制定分阶段、分部门、分地区实施对策,促进经济发展方式向绿色低碳转变(1)

- □ 以2030年INDC目标为指导,制定"十三五"、"十四五"、"十 五五"每个5年规划,制定约束性目标,并分解到各省市。
- □ 以2030年INDC目标推动能源生产和消费革命,形成促进发展方式 向低碳转型的管理制度、政策体系和运行机制。
- □ 实施煤炭消费总量控制目标和措施,煤炭消费峰值早于CO₂排放 峰值。

11. 以国家自主贡献目标为导向,制定分阶段、分部门、分地区实施对策,促进经济发展方式向绿色低碳转变(2)

- □ 中国工业部门能耗占全国终端总能耗约70% (发达国家一般占1/3), 其中高耗能原材料产业占50%。2020年,工业增加值的CO2强度 要比2005年下降50%以上。工业部门的CO2排放要率先达到峰值。
- □ 东部沿海经济较发达地区要制定更为积极的低碳发展目标,在全国率先实施煤炭消费和CO2排放总量控制,争取早日达峰。

12. 明确低碳发展在国家和地区总体发展中的定位,加强制度和政策保障体系的建设(1)

- 实施应对气候变化的国家战略和区域战略,完善应对气候变化治理体系,制定约束性指标,强化各级政府的目标责任制,落实企业社会责任,鼓励公众广泛参与。
- □ 创新低碳发展方式,加快产业转型升级、提质增效。全国已有42 个城市(或省)开展了低碳城市建设试点,并取得积极成效。
- 倡导低碳生活和消费方式,强化建筑、交通领域节能减碳标准, 抑制不合理能源需求。

12. 明确低碳发展在国家和地区总体发展中的定位,加强制度和政策保障体系的建设(2)

- 加强财税金融政策体系和低碳消费激励机制的建设,建立并完善碳排放权交易等市场机制,为先进能源技术创新和低碳发展创造良好的制度环境、政策环境和市场环境。
 - 风电、太阳能发电上网电价补贴。上网电价: 风电0.51-0.61元/KWh, 太阳能发电0.9元/KWh。
 - 可再生能源基金。全国电费中收取0.015元/kWh。
 - 风电场增值税减半。风电2020年左右可取消补贴。

12. 明确低碳发展在国家和地区总体发展中的定位,加强制度和政策保障体系的建设(3)

- □ 发挥碳排放空间的紧缺资源和生产要素的属性,改革能源价格 机制,推进碳排放额度交易市场建设。
 - 碳税和碳市场等"碳价"机制,引导先进能源技术创新和社会投资 导向,促进能源体系变革和低碳发展。
 - "五市二省"碳排放交易试点进展顺利,2016年开始建立全国统一碳市场。
 - 努力增加碳汇,重视其他非CO₂温室气体减排。
 - 全面提升适应气候变化的能力。

13. 我国面临经济发展方式转型的新时期,新常态的新形势下绿色低碳发展要有新的思路和新的举措

- □ 由注重GDP增长的速度和数量转向更加注重经济发展的质量和效益, GDP增速回落到7%左右中高速,产业结构调整加速,钢铁、水泥等高 耗能原材料产品将陆续达到峰值,有利于降低GDP能耗强度,但各地仍 存在为保增长继续扩充重化工业产能的倾向。
- 能源需求增速放缓,有利于能源结构调整,提高清洁低碳能源的比例。但煤炭行业化解产业过剩也会挤占新能源的发展空间和市场。
- 要强化绿色低碳发展是生态文明建设核心内容的发展理念,改变各级领导的发展观和政绩观,加快推动能源革命的制度建设和机制改革。

14. 实现 CO_2 峰值目标,建立高比例可再生能源体系,关键是要为企业推动技术创新、打造核心技术竞争力创造良好政策环境和市场环境 (1)

- □ 从目前到2030年,实现CO₂排放峰值目标的低碳投资超过40万亿元,其中非化石能源发电投资将超过10万亿元,为新能源和可再生能源企业发展提供了广阔的空间。
- □ 可再生能源企业健康发展核心要加强技术创新,解决大比例可再生能源上网的安全、稳定和储能等技术屏障,提高电网对可再生能源的消纳能力降低发电成本,2020年前后逐步实现平价上网,提高可再生能源企业自身技术和市场的竞争力。
- □ 国际先进技术前沿和新经济增长点,成为大国战略必争高科技领域。发达国家凭借技术优势,也要在发展中国家扩大商机和竞争优势。据 UNEP测算,实现全球2℃目标,未来40年内每年先进能源投资将增加 1.2万亿美元,世界范围内先进技术发展迅速且竞争激烈。

14. 实现CO₂峰值目标,建立高比例可再生能源体系,关键是要为企业推动技术创新、打造核心技术竞争力创造良好政策环境和市场环境(2)

- □ UNFCCC框架下技术合作与技术转让,以及南南合作的进展,为可再生能源企业的国际合作、引进技术和开拓国际市场创造了机遇。
- 分布式可再生能源智能网络实现社区、家庭可再生能源生产和利用的共享,促进了新能源服务产业的发展,实现社区、家庭和企业的多方合作和惠益共赢。
- □ 可再生能源生产和利用融入智能社区和智能家庭建设,实现"低碳"和"智慧"的双重功效。

15. 全球应对气候变化国际制度框架要促进各国的可持续发展,促进国际技术合作和互利共赢(1)

- "应对气候变化的智慧行动可以推动创新,提高经济增长并带来诸如可持续发展、增强能源安全、改善公共健康和提高生活质量等广泛效益,增强国家安全和国际安全。"——《中美气候变化联合声明》
- □ 促进能源体系变革,减少CO₂排放,具有经济、社会、环境多重效 益,既是应对气候变化的核心对策,也是各国实现可持续发展的 重要机遇,存在合作共赢的空间。

15. 全球应对气候变化国际制度框架要促进各国的可持续发展,促进国际技术合作和互利共赢(2)

- □ 全球应对气候变化国际制度不仅着眼于减排责任和义务的分担, 更应着重于发展机遇的共享,着重于促进世界范围内经济社会发 展方式向绿色低碳转型,转变经济增长方式和社会消费方式,促 进能源变革。在"共同但有区别的责任"原则下,使世界各国都 实现可持续发展与CO2减排的双重目标和共赢路径。
- 充分发挥碳价的作用,促进UNFCCC框架下技术转让,有利于促进发展中国家的可持续发展,同时给发达国家企业带来更广泛的市场和商机。增大了国际技术合作和技术转让的空间和潜力。

